杭州远华激光设备制造有限公司 新闻中心

联系我们/Contact Us

  • 杭州远华激光设备制造有限公司
  • 手 机:138 05769460
  • 电 话:0571—62053808
  • 传 真:0571—62053809
  • 邮 箱:
  • 地 址:杭州富阳区东洲工业区许家埭中心东路333号
  • 客 服:

2015大功率半导体激光器的发展情况

激光打标机、激光切割机、激光焊接机等等激光设备中激光器起着举足轻重的地位,在激光器的发展历程中,半导体激光器的发展尤为重要,材料加工用激光器主要要满足高功率和高光束质量,所以为了提高大功率半导体激光器的输出功率,可以将十几个或几十个单管激光器芯片集成封装、形成激光器巴条,将多个巴条堆叠起来可形成激光器二维叠阵,激光器叠阵的光功率可以达到千瓦级甚至更高。但是随着半导体激光器条数的增加,其光束质量将会下降。

另外,半导体激光器结构的特殊性决定了其快、慢轴光束质量不一致:快轴的光束质量接近衍射极限,而慢轴的光束质量却比较差,这使得半导体激光器在工业应用中受到了很大的限制。要实现高质量、宽范围的激光加工,激光器必须同时满足高功率和高光束质量。因此,现在发达国家均将研究开发新型高功率、高光束质量的大功率半导体激光器作为一个重要研究方向,以满足要求更高激光功率密度的激光材料加工应用的需求。
  大功率半导体激光器的关键技术包括半导体激光芯片外延生长技术、半导体激光芯片的封装和光学准直、激光光束整形技术和激光器集成技术。
  (1)半导体激光芯片外延生长技术
  大功率半导体激光器的发展与其外延芯片结构的研究设计紧密相关。近年来,美、德等国家在此方面投入巨大,并取得了重大进展,处于世界领先地位。首先,应变量子阱结构的采用,提高了大功率半导体激光器的光电性能,降低了器件的阈值电流密度,并扩展了GaAs基材料系的发射波长覆盖范围。其次,采用无铝有源区提高了激光芯片端面光学灾变损伤光功率密度,从而提高了器件的输出功率,并增加了器件的使用寿命。再者,采用宽波导大光腔结构增加了光束近场模式的尺寸,减小了输出光功率密度,从而增加了输出功率,并延长了器件寿命。目前,商品化的半导体激光芯片的电光转换效率已达到60%,实验室中的电光转换效率已超过70%,预计在不久的将来,半导体激光器芯片的电光转换效率能达到85%以上。
  (2)半导体激光芯片的封装和光学准直
  激光芯片的冷却和封装是制造大功率半导体激光器的重要环节,由于大功率半导体激光器的输出功率高、发光面积小,其工作时产生的热量密度很高,这对芯片的封装结构和工艺提出了更高要求。目前,国际上多采用铜热沉、主动冷却方式、硬钎焊技术来实现大功率半导体激光器阵列的封装,根据封装结构的不同,又可分为微通道热沉封装和传导热沉封装。
  半导体激光器的特殊结构导致其光束的快轴方向发散角非常大,接近40°,而慢轴方向的发散角只有10°左右。为了使激光长距离传输以便于后续光学处理,需要对光束进行准直。由于半导体激光器发光单元尺寸较小,目前,国际上常用的准直方法是微透镜准直。其中,快轴准直镜通常为数值孔径较大的微柱非球面镜,慢轴准直镜则是对应于各个发光单元的微柱透镜。经过快慢轴准直后,快轴方向的发散角可以达到8mrad,慢轴方向的发散角可以达到30mrad。

返回顶部